Informations - 5.0 out of 5 based on 1 vote

    Sur nous

    Sur la base des résultats d’un travail de recherche universitaire remontant à 25 ans, la société SARL Colorlite kft. a développé des lunettes corrigeant le daltonisme pour les personnes ayant un problème de daltonisme et pour les daltoniens. Sur la base des résultats d’un examen unique de daltonisme, nous recommandons des lunettes personnalisées corrigeant le daltonisme pour que ces personnes puissent découvrir plus de teintes, cachées pour elles jusqu’ici.


    Questions souvent répétées

    1. En quoi le test Colorlite examinant le daltonisme se diffère-t-il des autres tests examinant la perception des couleurs?

    Notre test examinant la perception des couleurs détermine tous les types et la gravité du problème de daltonisme, et au cours de la mesure comparative avec les verres correcteurs il nous aide à choisir les verres correcteurs les plus adéquats. Le test est rapide, objectif et simple, pareil à un examen visuel habituel (visus).

    2. Pourquoi la correction du daltonisme est importante?

    Les couleurs sont importantes pour nous même de plusieurs points de vue. Elles influencent notre envie, offrent un plaisir esthétique, et portent des informations. À tout bout de champ nous trébuchons sur des informations codées en couleur. Plusieurs professions ne sont pas autorisées pour les daltoniens, il sont défavorisés pratiquement presque partout. À l’aide des verres corrigeant la perception des couleurs, nous offrons un soutien pour les daltoniens à s’orienter dans un monde plein de couleurs.

    3. Est-ce qu’on peut guérir le daltonisme?

    On ne peut pas guérir le daltonisme, bien que – pareillement aux lunettes normales, - la perception des couleurs peut être améliorée à l’aide des verres corrigeant la perception des couleurs.

    4. Qu’est que ça veut dire qu’un daltonisme du type « protan » ou « deutan »?

    Étant donné que le daltonisme est un état congénital, on peut distinguer de nombreuses occurrences génétiques. Le plus fréquent est le défaut des récepteurs nommés L et M (sensibles aux longues et moyennes longueurs d’onde) ; on a nommé ces récepteurs : Protanomaly, Protanopy, sous un terme générique « Protan » ou Deuteranomaly, Deuteranopy, brièvement « Deutan ». Pour plus de détails consulter la partie « fond scientifique ».

    5. Quel est la différence entre le daltonisme et la cécité aux couleurs?

    Dans l'oeil humain, se situent sur la rétine trois récepteurs de couleurs (sensibles a la lumiere rouge, verte et bleue). Le cerveau compose a partir des stimuli de ces récepteurs l'image en couleurs. Dans le cas des daltoniens, les trois récepteurs de couleurs fonctionnent, mais la sensibilité de l'un d'entre eux est diminuée. Pour les personnes atteintes de cécité aux couleurs, au moins un des récepteurs de couleur ne fonctionne pas, mais le dysfonctionnement de deux ou des trois récepteurs peut également se produire.

    6. Pourquoi y a t'il plus de daltonien masculins?

    La fréquence du daltonisme chez les hommes est 16 fois plus élevée que chez les femmes. 8% des hommes et 0.5%-des femmes sont daltoniens. Le daltonisme est un probleme héréditaire, issu d'un défaut du chromosome X. Une femme ne devient daltonienne que si les deux chromosomes sont défectueux. Si seulement l'un d'eux est défectueux, elle sera uniquement porteuse du daltonisme. Chez les hommes, le défaut du chromosome X occasionne le daltonisme (XY).

    7. Le daltonisme peut-il varier dans le temps?

    Le type et la gravité du daltonisme héréditaire ne change pas avec le temps. Les troubles de vision des couleurs acquis, peuvent varier dans le temps. Le diabete, le glaucome ou le «jaunissement» de la lentille oculaire peuvent modifier au cours du temps la vision des couleurs.


    Scientific Background

    lunettes pour daltoniens Vision des couleurs - La science

    Le chemin vers la compréhension du fonctionnement de notre cerveau, ainsi que celui de la vision, est loin d’être terminé ; et comprend de nombreux challenges pour la science. Les recherches ont cependant pu répondre à plusieurs questions : Dans quelle phase du traitement de la vision, la couleur que nous percevons se forme telle ? Dans quelle région de notre cerveau la couleur qui entre dans notre rétine se transforme-t-elle pour devenir la couleur que nous percevons ? La réponse est simple : la couleur que nous percevons se développe dans le second cortex visuel​ V4 et V5 (zone Broadmann 18-19). Le processus du traitement de la vision dans le cerveau peut-être divisé en 5 phases (V1, V2, V3, V4 et V5). Le stimulus provenant de nos yeux, plus précisément de la rétine est dans un premier temps traité par la zone Broadman 17 de notre cerveau (V1). D'autres parties du processus de traitement visuel sont formées dans les couches Broadman 18 et 19 (V2, V3, V4 et V5). Les recherches ont pu mesurer les différentes phases du processus de traitement de la vision à l’aide d’un IRM (imagerie par résonance magnétique) et un test spécifique pour la vision des couleurs. Les recherches ont pu séparer deux phases du traitement de la couleur (phase 1 et 2) qui répond directement aux stimuli générés par la lumière physique des phases responsables de la création de la sensation de couleur (statique) qui s'est réellement développée (V4, V5).

    Human color vision

    Normal human color perception can distinguish between several million different colors and the eye is capable of perceiving color in the visual wavelength range between 380 and 780 nanometers. In the human eye there are more than 6 million receptors called cones, which sense the color of the light reaching the eye. Based on the sensitivity range of their photopigments three different kinds of cones can be identified. Their names are Protos or L cone, (sensitive to the red colors: Long wavelengths) Deuteros or M cone (sensitive to the green colors: Medium wavelengths) and Tritos or S cone (sensitive to the blue colors: Short wavelengths). The figure below shows the sensitivity functions of these receptors.

    Correction du daltonisme

    Figure 1. Normal receptor sensitivity functions in arbitrary units over wavelength

    Inherited Colour Vision Deficiency and color blindness

    Color vision ability is essentially the ability of the observer to identify the colors (color identification) and the ability to distinguish between slightly different colors (color discrimination). Normal color vision is defined as the color vision ability of an "average" observer. Color vision deficiency and color blindness occurs when one or more of the cone's sensitivity functions differ significantly from the above shown normal ones. This results in the alteration (reduction) of color identification and color discrimination ability. Based on their genetic origin and characteristics several types of color vision deficiency and color blindness can be distinguished. The most common ones occur in the red and/or green region called Protanomaly, Protanopy (in short “Protan”) or Deuteranomaly, Deuteranopy (in short “Deutan”), much more seldom the blue region is defective (Tritanomaly) and only in extremely rare occasions all the three receptors are damaged or missing (Achromatopsy). The red-green color vision deficiency / color blindness is inherited genetically with the "X" chromosomes; consequently it is much more common among males than females. Women have two X-chromosomes and if one of them carries the color normal genetic information it suppresses the defective information in the other one. Men do not have this duplication; therefore if a man inherits a defective X chromosome from his mother (who is most likely not color vision deficient / color blind) he is going to be color vision deficient or color blind. Approximately 8 % of Caucasian men and 0.4-0.5 % of women are red-green color vision deficient. Inherited blue color vision deficiency is extremely rare, approximately 0.05%. For many years it was taught that color vision deficient receptors differ from normal ones due to their insufficient sensitivity. However, recent scientific publications are describing color vision deficiency as a consequence of the change in the sensitivity range of the receptors ('parallel shift'). The Colorlite color vision correction method is based on this theory.

    Color vision enhancement

    Colorlite has designed and manufactures color vision correction lenses with a special coating, which is designed on such way that enhances the individual's color vision. The correction can be applied for each type of red-green color vision deficiencies and color blindness, even in the most severe ones.

    Figure 2 below shows the cone sensitivity functions of a Deuteranomalous subject (someone whose Middle wavelength sensing receptor sensitivity is shifted towards the Long wavelengths.) Due to the shift, the difference between the L and M sensitivity functions decreases; therefore the subject has difficulty in differentiating between green and yellow shades.

    Correction du daltonismeCorrection du daltonisme

    Figure 2. L, M, and S cone sensitivity functions of a normal and a Deuteranomalous subject. M and S cones fully overlap; the difference is in the L cone sensitivity.

    Figure 3. A filter suitable for the color vision deficient case shown in Figure 1.

    To compensate this defect a specially designed filter can be used. The requirement for this filter is to shift the Middle wavelength intensity of the light reaching the eye in such a way, that the color vision deficient receptors sensing the shifted spectrum send the same information to the visual nervous system, as the normal receptors would do sensing the unaltered incoming light. The filter has to be effective in the middle wavelength area where the deficiency is, and cause the least possible interference in the Short and Long wavelength range where the receptors of the color vision deficient subject are normal. A suitable filter characteristic for the case shown on Figure 2 is shown in Figure 3.

    As a result, the visual information becomes much closer to normal color vision than it was before. When considering the adaptation ability of the individual cones (e.g. the ability of the receptors to increase their sensitivity when there is low incoming signal and decrease their sensitivity when the incoming signal is high) from the color vision prospective this can be interpreted as if the sensitivity function of the receptors were really shifted. Figure 4 shows clearly that the filter shifted the defective Medium wavelength cone sensitivity very close to the normal one, left the Short wavelength sensitivity function untouched and caused a very small deviation in the Long wavelength sensitivities. The subject's color vision abilities have been restored very close to the normal.

    Correction du daltonisme

    Figure 4. Effect of the filter shown in Figure 3.

    Color vision testing and diagnosis of color vision deficiency and color blindness

    The traditional diagnostic tests, including different pseudo-isochromatic tests (Ishihara, Dvorin, Velhagen, etc.), yarn test, lantern test, etc. can only detect whether a subject is red-green color vision deficient or not. The type and, to some degree, the severity of the deficiency can be measured using an equipment called anomaloscope. Nowadays, the most advanced anomaloscopes are capable of detecting not only red-green, but blue color vision deficiency as well. Colorlite's color vision not only distinguishes between the red-green and other, rare types of color blindness, but also provides a quantitative estimate on the severity of red-green color vision deficiency and color blindness. The more accurate diagnosis of color vision deficiency and color blindness, permits to suggest the best color vision corrective lens. The easy-to-use test simply recommends lenses for color blind subjects, classified by our thorough research of several years and it measures the efficiency and the level of improvement.


    Publications scientifiques

    Publications scientifiques des inventeurs et leur groupe de travail universitaire, leurs brevets relatifs au test examinant la vision des couleurs normale et aux lunettes corrigeant la perception des couleurs.

    Publications about Colorlite color blindness correction and Colorlite test

    1. Áron Szélig, Klára Wenzel: Measuring threshold of sensitivity on coloured monitor. Lux et Colour Vespremiensis. 117 p. Budapest University of Technology and Economics, 2016. pp. 95-98. (ISBN:978-963-313-238-8)
    2. Samu Krisztián, Wenzel Klára, Urbin Ágnes, Kovács Sándor, Gere Attila, Kókai Zoltán, Sipos László: Comparison of chromatic contrast sensitivity of colour vision deficient people and normal colour observers. Lux et Color Vespremiensis. 117 p. Budapest University of Technology and Economics, 2016. pp. 87-90. (ISBN:978-963-313-238-8)
    3. Wenzel Klára, Urbin Ágnes: Measurement of the effect of chromaticity and intensity on colour representation parameters of a CRT display Recent innovation in Mechatronics, Paper 2437/208327. 4 p. (2015)
    4. Wenzel Klára, Urbin Ágnes: Colour vision under different states of adaptation. Proceedings of the 28th Session of CIE - Vol.1., International Commission on Illumination (CIE), 2015. p. 1012. 9 p. (ISBN:978-3-902842-55-8)
    5. Dr Wenzel Klára, Urbin Ágnes: Improving colour vision, Lumen V4 Conference, Budapest: MEE Lighting Society, 2014. pp. 427-438. (ISBN:978-963-9299-21-4)
    6. Urbin Ágnes, Wenzel Klára: Colour identification with coloured lenses, Colour and colorimetric: Multidisciplinary Contribution. 428 p. Vol. IX B., Multidisciplinary Contribution(ISBN:978-88-387-6242-0)
    7. Wenzel Klára, Langer Ingrid, Urbin Ágnes, Bencze Kinga, Kassai Virág: Color vision correction glasses. The Hungarian Society for the Gynaecology 2013 Congress.12.13.2013.
    8. Zsuzsanna Veres, Zoltán Németh, Ádám Veres, Klára Wenzel, Krisztián Samu: New Method for Examination of Colour Discrimination Using Anomaloscopes. Proceedings of CERiS'13 - Workshop on Cognitive and Eto-Robotics in iSpace. 162 p. (ISBN:978-963-313-086-5)
    9. K Wenzel, K Samu: Pseudo-Isochromatic Plates to Measure Colour Discrimination. Acta Polytechnica Hungarica9:(2) pp. 185-195. (2012)
    10. K Wenzel, I Langer, V Kassai, K Bencze: Colour preferences of people with normal and anomalous colour vision. International Interdisciplinary Conference on Colour and Pattern Harmony. 2012.06.13.pp. 79-80.
    11. K Wenzel, K Ladunga, K Samu, I Langer, F Szőke: Pseudo-Isochromatic Plates for Measuring the Ability to Discriminate Colours, 27th Session of the CIE. 2011.07.15.p. 85.
    12. Klara Wenzel: Coloured lights in nature. LUMEN V4, Conference of the Visegrad, Group on Lighting Technology. 2010.06.25.pp. 5-8.
    13. Klara Wenzel, Karoly Ladunga, Krisztian Samu, Ingrid Langer: Pseudo-Isochromatic Plates to Measure Colour Discrimination. 21st symposium of the International Colour Vision Society. 2010.07.05.pp. 85-86.
    14. Wenzel Klára: Colour vision effects in the art. XXXIIIth Colouristic Symposium. 2010.10.13.pp. 11-12.
    15. Klára Wenzel, Ingrid Langer, Károly Ladunga: Developing and testing a new colour vision test, Measuring Colour Perception by Monochromatic Colours. 2008: Proceedings of Sixth Conference on Mechanical Engineering. 2008. pp. 5-8. (ISBN:978-963-420-947-8)
    16. Wenzel K, Samu K, Langer I.: Colour Trainer Book for color vision deficient people. VII. Lux et Colour Vespremiensis Conference. 2008.11.06 VEAB, Paper 5.
    17. Samu K, Wenzel K: Test for colour deficiency with pseudo-isochromatic plates on a CRT monitor. XXIXth Colouristic Symposium. 75 p. 2003. Paper 14. (ISBN:963 9319 28 7)
    18. Samu K, Wenzel K: Irregular types of colour vision deficiency. II. Lux et Colour Vespremiensis Conference. 2003.10.16 MTA VEAB, Paper 6.
    19. Ábrahám Gy, Kovács G, Kucsera I, Wenzel G: Patent in Method for correcting colour deficiency, the filter used in the method and method for providing the filter AU3398801, 2000. P0000531, Hungary
    20. K Ladunga, K Wenzel, K Samu: Measurement of colour and luminance CTF on CRT in colour defectives and normal colour vision subjects. Periodica Polytechnica Mechanical Engineering 45: 103-108. (2001)
    21. Kovacs G, Kucsera I, Abraham G, Wenzel K: Enhancing colour representation for anomalous trichromats on CRT monitors. Colour Research and Applications 26:(S1) pp. 73-S276. (2001)
    22. K Samu, K Wenzel, K Ladunga: Colour and luminance contrast sensitivity function of people with anomalous colour vision. Proc. SPIE, Vol. 4421, 351 (2002). Rochester NY: pp. 351-354.
    23. Samu K, Ladunga K, Wenzel K: Reduced colour contrast sensitivity in colour vision deficiency. XXVIII. Symposium on calorimetry. (MKE), pp. 53-58.
    24. Ábrahám Gy, Kovács G, Kucsera I, Wenzel K: Instrument for diagnosis of colour deficiency. Proceedings of Second Conference on Mechanical Engineering. 811 p. 2000.05.26. Springer Medical Publishing Ltd., 2000. pp. 706-710. (ISBN:963-699-117-0)
    25. Gábor Kovács, György Ábrahám, Itala Kucsera, Klára Wenzel: Improving colour vision for colour deficient patients on video displays. Topical Meeting on Visual Science and its Applications. 2000.02.14. Massachusetts: Optical Society of America (OSA), 2000. pp. 333-336. (ISBN:1-55752-624-9)
    26. K Wenzel, K Ladunga Gy Abraham, G Kovacs, I Kucsera, K Samu: Measuring Colour Resolution of the Eye by Using Colour Monitor. Proceedings of Colour and Visual Scales Conference, 2000.04.13. London: Paper 15.
    27. Kucsera I, Wenzel K, Ábrahám Gy, Kovács G: Mathematical modelling of functional colour vision Proc. of Colour and Visual Scales Conference. London, 2000 National Physical Laboratory (NPL), pp. 1-4.
    28. Kucsera I, Wenzel K, Ábrahám Gy, Kovács G: Modelling colour sensation of people with normal colour vision and anomalous trichromats. ISCC 2nd Panchromatic Conference. Savannah, US 2000.02.21.pp. 59-63.
    29. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I: Measuring colour resolution of the eye by using colour monitors. Proc. of Colour and Visual Scales Conference. 2000 National Physical Laboratory (NPL), pp. 1-4.
    30. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I: Measuring colour adaptation on monitors. ISCC 2nd Panchromatic Conference. Savannah, USA, 2000.02.21.pp. 55-59.
    31. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I, Samu K: Measuring Colour Resolution of the Eye by Using Colour Monitor. Conference on Colour and Visual Scales, CIE. London, UK, 2000pp. 1-5.
    32. Ábrahám Gy, Kucsera I, Kovács G, Wenzel K: Checking the diagnosis of colour deficiency by colour mixing. CIE Symposium'99 75 years of CIE Photometry.1999.10.02. pp. 25/1-25/5.
    33. Ábrahám Gy, Wenzel K, Kucsera I: New method for assessing the spectral sensitivity curves of the human eye. Proc. of 24th CIE x017-2000 Session. Warsaw, Poland, 1999pp. 119-123.
    34. Kucsera I, Ábrahám Gy, Wenzel K, Kovács G: Approximation of human cone responsivity curves with low parametric mathematical functions. CIE Symposium'99 75 years of CIE Photometry. Budapest, Hungary 1999.10.02.pp. 28/1-28/5.
    35. Kucsera I, Ábrahám Gy, Wenzel K, Kovács G: Classification of colour deficiency by colour identification measurements. XXth Conference of the International Colour Vision Society. Göttingen, Germany, 1999pp. 1-4.
    36. Ladunga K, Wenzel K, Ábrahám Gy: Interactive Computer Aided Method for Test Colour Vision. 2nd International Conference of PhD Students, 1999 Miskolc University, Hungary pp. 199-204.
    37. Ladunga K, Wenzel K, Ábrahám G: New Computer Controlled Colour Vision Test. Proc. of Photonics Device and Systems. Bellingham: International Society for Optical Engineering (SPIE), 1999. pp. 501-505.(ISBN:0-8194-3641-0)
    38. Wenzel K, Ábrahám Gy, Ladunga K: Patent about Measuring Colour vision discrimination of colour vision deficiency. P9901241, 1999, Hungary
    39. Ladunga K., Kucsera I., Wenzel K.: If I were colorblind, Proceedings of CIE Symposium. CIE x018, Budapest 1999. 148-151. p.
    40. Wenzel K, Ábrahám Gy, Kucsera I, Kovács G: Measurements of colour adaptation under different coloured light. CIE Symposium'99 75 years of CIE Photometry. Budapest 1999.10.02.p. 4.
    41. Wenzel K, Ábrahám Gy, Kovács G, Kucsera I: Colour system for characterization of anomalous trichromacy: XXth Conference of the International Colour Vision Society. Göttingen, Germany, 1999pp. 25-28.
    42. Ábrahám Gy, Wenzel K: Patent about Method and Apparatus for Determining Spectral Sensitivity Parameters of Colour-Sensitive Receptors in the Eye, US5801808, 1995. HU95/00009. 
    43. Ábrahám Gy, Wenzel K: Correction of Colour deficiency. SOE '97 - XI Congress of the European Society of Ophthalmology,Vol. 1-2. Budapest,1997.06.05. Bologna: Monduzzi Editoriale, 1997. pp. 849-851. (ISBN:88-323-0601-8)
    44. Ábrahám Gy, Wenzel K: Method for the Correction of Colour Problems of the Human Eye. Proc. of VDI 6. Internationales Kolloquium Feinwerktechnik. Budapest, Hungary, 1997pp. 1-7.
    45. Wenzel K, Ábrahám Gy: A new theory of defective colour vision. Proc. of VDI 6. Internationales Kolloquium Feinwerktechnik. Budapest, Hungary, 1997pp. 11-14.
    46. Wenzel K, Ábrahám Gy, Szappanos J: Correcting of colour deficiencies. Colour 93: Proceedings of the 7th congress of the International Colour Association: Vol. B: Science and technology: contributed papers and posters. 340 p. (ISBN:963-420-307-8; 963-420-305-1)
    47. Alessandro Pensosi: Effetti dell'illuminazione artificiale su soggetti discromatici ed utilizzo di filtri ColorLite, Università degli Studi di Napoli, M44/198, 2018
    48. Francesca Di Rubbo: Valutazione dei Filtri Colorlite per la compensazione del deficit nella visione dei colori, Università degli Studi di Napoli, M44/403, 2017
    49. Giulia Zanin: Le discromatopsie: valutazione dei filtri ColorLite, Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, Corso di Laurea Triennale in Ottica e Optometria, Matricola: 1102822, 2017
    50. Urbin Ágnes, Nagy, Balázs Vince, Wenzel Klára: Chromatic discrimination under different states of chromatic adaptation, Proceedings of the Conference on "Smarter Lighting for Better Life" at the CIE Midterm Meeting 2017: Commission Internationale de l'Eclairage, (2017) Paper: 10.25039/x44.2017.PP02, 10 p.
    51. Wenzel Klára, Urbin, Ágnes: Color blind people in the traffic, ELEKTROTECHNIKA 3-4 pp. 22-23. (2017)
    52. Klara Wenzel: Regular Wear of Coloured Glasses Improved the Symptoms of Colour Vision Deficiency, International Journal of Innovative Studies in Sciences and Engineering Technology (IJISSET), ISSN 2455-4863, www.ijisset.org Volume: 6 Issue: 5 | 2020, IJISSET Page 46 Volume: 6 Issue: 5 | 2020, IJISSET Page 46
    53. Wenzel Klára, Urbin Ágnes, Langer Ingrid, Samu Krisztián: Correcting anomalous color vision with glasses, Magyar Tudomány 182(2021)9, 1194–1202, DOI: 10.1556/2065.182.2021.9.4
    54. Wenzel Klára; Ladunga Károly; Samu Krisztián: COLOR VISION TEST, Budapest, Magyarország : Colorlite Kft (2018), 44 p. ISBN: 9786150033839
    55. Wenzel K, Samu K, Langer I: A color naming exercise book for color vision deficient people (Színtani gyakorlókönyv színtévesztőknek), In: VII. Lux et Color Vespremiensis Konferencia, Veszprém, Magyarország : VEAB, (2008) Paper: 5
    56. Wenzel K, Samu K, Langer I: A color naming exercise book for color vision deficient people (Színtani gyakorlókönyv színtévesztőknek): alapfokú gyakorlókönyv, Budapest, Magyarország : Colorlite Kft (2009) , 42 p. ISBN: 9789630666985
    57. Wenzel Klára, Samu Krisztián: Improving the color identification of color vision deficient people (Színtévesztők szín identifikációs képességének fejlesztése) In: Kolorisztikai Szimpozium, (2009) pp. 41-42., 2 p.
    58. Wenzel K, Samu K, Langer I: Testbook for the colour vision deficient - basic tests, Budapest, Magyarország : Colorlite Kft (2013) , 42 p. ISBN: 9789630825702
    59. Sipos László, Gere Attila, Kókai Zoltán, Nyitrai Ákos, Kovács Sándor, Urbin Ágnes, Samu Krisztián, Wenzel Klára: Eye-Tracker Analysis of the Contrast Sensitivity of Anomalous and Normal Trichromats: A Loglinear Examination with Landolt-C Figures, APPLIED SCIENCES-BASEL 11 : 7 pp. 1-18. Paper: 3200 , 18 p. (2021)

    Company History

    The history of our company dates back to 25 years. At that time, two professors from the Technology University of Budapest had started color vision research.

    Soon they realized, that the most common red-green color vision deficiency, inherited genetic disorder can be corrected with special colored glasses. A new mathematical model of color vision deficiency and blindness and whole set of color vision measurement methods have been developed. In 1993, the scientists patented their color vision diagnostic tests and correction glasses. In 1998, with the support of the first American-Hungarian Fund, a capital investment company, Coloryte Inc. was founded.

    The inventors at Coloryte Inc. had a great opportunity to continue the research. Successful clinical trials (CRO) proved the safety and effectivity of the Coloryte Color Vision Diagnostic and Correction System, that were published many times in scientific publications and got the FDA approval as well, but the mandate of the American-Hungarian Fund expired at the end of 2003, and could not continue the support of Coloryte Inc., which was only entered to the market, and the company was finally closed.

    At that time, a new company Colorlite Ltd. was established to continue the heritage of this monumental research. Meanwhile, the Colorlite Color Vision Diagnostic and Enhancement lenses have been further developed and thousands of color vision deficient and color blind people were investigated through the years.

     

    Prof Wenzel1

    Professor Klára Wenzel, D.Sc.
    Chief Scientific Lead, Co-Founder & Inventor

    Professor Klara Wenzel, teaching color sciences in the Technical University of Budapest was the main inventor of the color blindness correction glasses and a new color vision diagnostic device, which was developed based on her mathematical model of color vision deficiencies. The current Colorlite products are the results of her 25 years of research and development.


    Samsung Cooperation

    As a result of the cooperation between Colorlite, Samsung and Technical University of Budapest a new application - called SeeColors - has been developed. The application adopted the Colorlite color vision test, so it can be used as an app on any Samsung Galaxy 6 mobile phone and above. Color vision deficient and color blind users simply need to connect their mobile and TV via Wi-Fi and the screen will automatically change its color setting according to the test result to provide greater color experience for them. Fore more information click here:  The Wall Street Journal article about SeeColors application.

    The Samsung SeeColor Application based on the Colrolite Color Vision Test


    1 1 1 1 1 1 1 1 1 1 Rating 5.00 (1 Vote)

    Commentaires Facebook

    Share on Myspace
    © 2024 COLORLITE. All Rights Reserved.